extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C6).1C24 = C22×D4⋊2S3 | φ: C24/C22 → C22 ⊆ Aut C2×C6 | 96 | | (C2xC6).1C2^4 | 192,1515 |
(C2×C6).2C24 = C2×S3×C4○D4 | φ: C24/C22 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6).2C2^4 | 192,1520 |
(C2×C6).3C24 = C2×D4○D12 | φ: C24/C22 → C22 ⊆ Aut C2×C6 | 48 | | (C2xC6).3C2^4 | 192,1521 |
(C2×C6).4C24 = C2×Q8○D12 | φ: C24/C22 → C22 ⊆ Aut C2×C6 | 96 | | (C2xC6).4C2^4 | 192,1522 |
(C2×C6).5C24 = C6.C25 | φ: C24/C22 → C22 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).5C2^4 | 192,1523 |
(C2×C6).6C24 = S3×2+ 1+4 | φ: C24/C22 → C22 ⊆ Aut C2×C6 | 24 | 8+ | (C2xC6).6C2^4 | 192,1524 |
(C2×C6).7C24 = D6.C24 | φ: C24/C22 → C22 ⊆ Aut C2×C6 | 48 | 8- | (C2xC6).7C2^4 | 192,1525 |
(C2×C6).8C24 = S3×2- 1+4 | φ: C24/C22 → C22 ⊆ Aut C2×C6 | 48 | 8- | (C2xC6).8C2^4 | 192,1526 |
(C2×C6).9C24 = D12.39C23 | φ: C24/C22 → C22 ⊆ Aut C2×C6 | 48 | 8+ | (C2xC6).9C2^4 | 192,1527 |
(C2×C6).10C24 = C3×C2.C25 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | 4 | (C2xC6).10C2^4 | 192,1536 |
(C2×C6).11C24 = C2×C4×Dic6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).11C2^4 | 192,1026 |
(C2×C6).12C24 = C2×C12⋊2Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).12C2^4 | 192,1027 |
(C2×C6).13C24 = C2×C12.6Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).13C2^4 | 192,1028 |
(C2×C6).14C24 = C42.274D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).14C2^4 | 192,1029 |
(C2×C6).15C24 = S3×C2×C42 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).15C2^4 | 192,1030 |
(C2×C6).16C24 = C2×C42⋊2S3 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).16C2^4 | 192,1031 |
(C2×C6).17C24 = C2×C4×D12 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).17C2^4 | 192,1032 |
(C2×C6).18C24 = C4×C4○D12 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).18C2^4 | 192,1033 |
(C2×C6).19C24 = C2×C4⋊D12 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).19C2^4 | 192,1034 |
(C2×C6).20C24 = C2×C42⋊7S3 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).20C2^4 | 192,1035 |
(C2×C6).21C24 = C42.276D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).21C2^4 | 192,1036 |
(C2×C6).22C24 = C2×C42⋊3S3 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).22C2^4 | 192,1037 |
(C2×C6).23C24 = C42.277D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).23C2^4 | 192,1038 |
(C2×C6).24C24 = C2×C23.16D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).24C2^4 | 192,1039 |
(C2×C6).25C24 = C2×Dic3.D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).25C2^4 | 192,1040 |
(C2×C6).26C24 = C2×C23.8D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).26C2^4 | 192,1041 |
(C2×C6).27C24 = C23⋊3Dic6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).27C2^4 | 192,1042 |
(C2×C6).28C24 = C2×S3×C22⋊C4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).28C2^4 | 192,1043 |
(C2×C6).29C24 = C2×Dic3⋊4D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).29C2^4 | 192,1044 |
(C2×C6).30C24 = C24.35D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).30C2^4 | 192,1045 |
(C2×C6).31C24 = C2×D6⋊D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).31C2^4 | 192,1046 |
(C2×C6).32C24 = C2×C23.9D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).32C2^4 | 192,1047 |
(C2×C6).33C24 = C2×Dic3⋊D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).33C2^4 | 192,1048 |
(C2×C6).34C24 = C24.38D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).34C2^4 | 192,1049 |
(C2×C6).35C24 = C2×C23.11D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).35C2^4 | 192,1050 |
(C2×C6).36C24 = C2×C23.21D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).36C2^4 | 192,1051 |
(C2×C6).37C24 = C23⋊4D12 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).37C2^4 | 192,1052 |
(C2×C6).38C24 = C24.41D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).38C2^4 | 192,1053 |
(C2×C6).39C24 = C24.42D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).39C2^4 | 192,1054 |
(C2×C6).40C24 = C2×Dic6⋊C4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).40C2^4 | 192,1055 |
(C2×C6).41C24 = C2×C12⋊Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).41C2^4 | 192,1056 |
(C2×C6).42C24 = C2×Dic3.Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).42C2^4 | 192,1057 |
(C2×C6).43C24 = C2×C4.Dic6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).43C2^4 | 192,1058 |
(C2×C6).44C24 = C6.72+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).44C2^4 | 192,1059 |
(C2×C6).45C24 = C2×S3×C4⋊C4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).45C2^4 | 192,1060 |
(C2×C6).46C24 = C2×C4⋊C4⋊7S3 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).46C2^4 | 192,1061 |
(C2×C6).47C24 = C2×Dic3⋊5D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).47C2^4 | 192,1062 |
(C2×C6).48C24 = C6.82+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).48C2^4 | 192,1063 |
(C2×C6).49C24 = C2×D6.D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).49C2^4 | 192,1064 |
(C2×C6).50C24 = C2×C12⋊D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).50C2^4 | 192,1065 |
(C2×C6).51C24 = C6.2- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).51C2^4 | 192,1066 |
(C2×C6).52C24 = C2×D6⋊Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).52C2^4 | 192,1067 |
(C2×C6).53C24 = C2×C4.D12 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).53C2^4 | 192,1068 |
(C2×C6).54C24 = C6.2+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).54C2^4 | 192,1069 |
(C2×C6).55C24 = C6.102+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).55C2^4 | 192,1070 |
(C2×C6).56C24 = C2×C4⋊C4⋊S3 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).56C2^4 | 192,1071 |
(C2×C6).57C24 = C6.52- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).57C2^4 | 192,1072 |
(C2×C6).58C24 = C6.112+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).58C2^4 | 192,1073 |
(C2×C6).59C24 = C6.62- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).59C2^4 | 192,1074 |
(C2×C6).60C24 = C42.87D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).60C2^4 | 192,1075 |
(C2×C6).61C24 = C42.88D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).61C2^4 | 192,1076 |
(C2×C6).62C24 = C42.89D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).62C2^4 | 192,1077 |
(C2×C6).63C24 = C42.90D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).63C2^4 | 192,1078 |
(C2×C6).64C24 = S3×C42⋊C2 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).64C2^4 | 192,1079 |
(C2×C6).65C24 = C42⋊9D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).65C2^4 | 192,1080 |
(C2×C6).66C24 = C42.188D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).66C2^4 | 192,1081 |
(C2×C6).67C24 = C42.91D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).67C2^4 | 192,1082 |
(C2×C6).68C24 = C42⋊10D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).68C2^4 | 192,1083 |
(C2×C6).69C24 = C42⋊11D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).69C2^4 | 192,1084 |
(C2×C6).70C24 = C42.92D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).70C2^4 | 192,1085 |
(C2×C6).71C24 = C42⋊12D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).71C2^4 | 192,1086 |
(C2×C6).72C24 = C42.93D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).72C2^4 | 192,1087 |
(C2×C6).73C24 = C42.94D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).73C2^4 | 192,1088 |
(C2×C6).74C24 = C42.95D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).74C2^4 | 192,1089 |
(C2×C6).75C24 = C42.96D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).75C2^4 | 192,1090 |
(C2×C6).76C24 = C42.97D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).76C2^4 | 192,1091 |
(C2×C6).77C24 = C42.98D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).77C2^4 | 192,1092 |
(C2×C6).78C24 = C42.99D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).78C2^4 | 192,1093 |
(C2×C6).79C24 = C42.100D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).79C2^4 | 192,1094 |
(C2×C6).80C24 = C4×D4⋊2S3 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).80C2^4 | 192,1095 |
(C2×C6).81C24 = D4×Dic6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).81C2^4 | 192,1096 |
(C2×C6).82C24 = C42.102D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).82C2^4 | 192,1097 |
(C2×C6).83C24 = D4⋊5Dic6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).83C2^4 | 192,1098 |
(C2×C6).84C24 = C42.104D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).84C2^4 | 192,1099 |
(C2×C6).85C24 = C42.105D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).85C2^4 | 192,1100 |
(C2×C6).86C24 = C42.106D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).86C2^4 | 192,1101 |
(C2×C6).87C24 = D4⋊6Dic6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).87C2^4 | 192,1102 |
(C2×C6).88C24 = C4×S3×D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).88C2^4 | 192,1103 |
(C2×C6).89C24 = C42⋊13D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).89C2^4 | 192,1104 |
(C2×C6).90C24 = C42.108D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).90C2^4 | 192,1105 |
(C2×C6).91C24 = C42⋊14D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).91C2^4 | 192,1106 |
(C2×C6).92C24 = C42.228D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).92C2^4 | 192,1107 |
(C2×C6).93C24 = D4×D12 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).93C2^4 | 192,1108 |
(C2×C6).94C24 = D12⋊23D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).94C2^4 | 192,1109 |
(C2×C6).95C24 = D12⋊24D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).95C2^4 | 192,1110 |
(C2×C6).96C24 = Dic6⋊23D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).96C2^4 | 192,1111 |
(C2×C6).97C24 = Dic6⋊24D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).97C2^4 | 192,1112 |
(C2×C6).98C24 = D4⋊5D12 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).98C2^4 | 192,1113 |
(C2×C6).99C24 = D4⋊6D12 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).99C2^4 | 192,1114 |
(C2×C6).100C24 = C42⋊18D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).100C2^4 | 192,1115 |
(C2×C6).101C24 = C42.229D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).101C2^4 | 192,1116 |
(C2×C6).102C24 = C42.113D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).102C2^4 | 192,1117 |
(C2×C6).103C24 = C42.114D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).103C2^4 | 192,1118 |
(C2×C6).104C24 = C42⋊19D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).104C2^4 | 192,1119 |
(C2×C6).105C24 = C42.115D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).105C2^4 | 192,1120 |
(C2×C6).106C24 = C42.116D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).106C2^4 | 192,1121 |
(C2×C6).107C24 = C42.117D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).107C2^4 | 192,1122 |
(C2×C6).108C24 = C42.118D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).108C2^4 | 192,1123 |
(C2×C6).109C24 = C42.119D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).109C2^4 | 192,1124 |
(C2×C6).110C24 = Q8×Dic6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).110C2^4 | 192,1125 |
(C2×C6).111C24 = Dic6⋊10Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).111C2^4 | 192,1126 |
(C2×C6).112C24 = C42.122D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).112C2^4 | 192,1127 |
(C2×C6).113C24 = Q8⋊6Dic6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).113C2^4 | 192,1128 |
(C2×C6).114C24 = Q8⋊7Dic6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).114C2^4 | 192,1129 |
(C2×C6).115C24 = C4×S3×Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).115C2^4 | 192,1130 |
(C2×C6).116C24 = C42.125D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).116C2^4 | 192,1131 |
(C2×C6).117C24 = C4×Q8⋊3S3 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).117C2^4 | 192,1132 |
(C2×C6).118C24 = C42.126D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).118C2^4 | 192,1133 |
(C2×C6).119C24 = Q8×D12 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).119C2^4 | 192,1134 |
(C2×C6).120C24 = Q8⋊6D12 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).120C2^4 | 192,1135 |
(C2×C6).121C24 = Q8⋊7D12 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).121C2^4 | 192,1136 |
(C2×C6).122C24 = C42.232D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).122C2^4 | 192,1137 |
(C2×C6).123C24 = D12⋊10Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).123C2^4 | 192,1138 |
(C2×C6).124C24 = C42.131D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).124C2^4 | 192,1139 |
(C2×C6).125C24 = C42.132D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).125C2^4 | 192,1140 |
(C2×C6).126C24 = C42.133D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).126C2^4 | 192,1141 |
(C2×C6).127C24 = C42.134D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).127C2^4 | 192,1142 |
(C2×C6).128C24 = C42.135D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).128C2^4 | 192,1143 |
(C2×C6).129C24 = C42.136D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).129C2^4 | 192,1144 |
(C2×C6).130C24 = C24.67D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).130C2^4 | 192,1145 |
(C2×C6).131C24 = C24.43D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).131C2^4 | 192,1146 |
(C2×C6).132C24 = S3×C22≀C2 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 24 | | (C2xC6).132C2^4 | 192,1147 |
(C2×C6).133C24 = C24⋊7D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).133C2^4 | 192,1148 |
(C2×C6).134C24 = C24⋊8D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).134C2^4 | 192,1149 |
(C2×C6).135C24 = C24.44D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).135C2^4 | 192,1150 |
(C2×C6).136C24 = C24.45D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).136C2^4 | 192,1151 |
(C2×C6).137C24 = C24.46D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).137C2^4 | 192,1152 |
(C2×C6).138C24 = C24⋊9D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).138C2^4 | 192,1153 |
(C2×C6).139C24 = C24.47D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).139C2^4 | 192,1154 |
(C2×C6).140C24 = C12⋊(C4○D4) | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).140C2^4 | 192,1155 |
(C2×C6).141C24 = C6.322+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).141C2^4 | 192,1156 |
(C2×C6).142C24 = Dic6⋊19D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).142C2^4 | 192,1157 |
(C2×C6).143C24 = Dic6⋊20D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).143C2^4 | 192,1158 |
(C2×C6).144C24 = C4⋊C4.178D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).144C2^4 | 192,1159 |
(C2×C6).145C24 = C6.342+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).145C2^4 | 192,1160 |
(C2×C6).146C24 = C6.702- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).146C2^4 | 192,1161 |
(C2×C6).147C24 = C6.712- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).147C2^4 | 192,1162 |
(C2×C6).148C24 = S3×C4⋊D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).148C2^4 | 192,1163 |
(C2×C6).149C24 = C6.372+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).149C2^4 | 192,1164 |
(C2×C6).150C24 = C4⋊C4⋊21D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).150C2^4 | 192,1165 |
(C2×C6).151C24 = C6.382+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).151C2^4 | 192,1166 |
(C2×C6).152C24 = C6.722- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).152C2^4 | 192,1167 |
(C2×C6).153C24 = D12⋊19D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).153C2^4 | 192,1168 |
(C2×C6).154C24 = C6.402+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).154C2^4 | 192,1169 |
(C2×C6).155C24 = C6.732- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).155C2^4 | 192,1170 |
(C2×C6).156C24 = D12⋊20D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).156C2^4 | 192,1171 |
(C2×C6).157C24 = C6.422+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).157C2^4 | 192,1172 |
(C2×C6).158C24 = C6.432+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).158C2^4 | 192,1173 |
(C2×C6).159C24 = C6.442+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).159C2^4 | 192,1174 |
(C2×C6).160C24 = C6.452+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).160C2^4 | 192,1175 |
(C2×C6).161C24 = C6.462+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).161C2^4 | 192,1176 |
(C2×C6).162C24 = C6.1152+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).162C2^4 | 192,1177 |
(C2×C6).163C24 = C6.472+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).163C2^4 | 192,1178 |
(C2×C6).164C24 = C6.482+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).164C2^4 | 192,1179 |
(C2×C6).165C24 = C6.492+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).165C2^4 | 192,1180 |
(C2×C6).166C24 = (Q8×Dic3)⋊C2 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).166C2^4 | 192,1181 |
(C2×C6).167C24 = C6.752- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).167C2^4 | 192,1182 |
(C2×C6).168C24 = C4⋊C4.187D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).168C2^4 | 192,1183 |
(C2×C6).169C24 = C6.152- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).169C2^4 | 192,1184 |
(C2×C6).170C24 = S3×C22⋊Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).170C2^4 | 192,1185 |
(C2×C6).171C24 = C4⋊C4⋊26D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).171C2^4 | 192,1186 |
(C2×C6).172C24 = C6.162- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).172C2^4 | 192,1187 |
(C2×C6).173C24 = C6.172- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).173C2^4 | 192,1188 |
(C2×C6).174C24 = D12⋊21D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).174C2^4 | 192,1189 |
(C2×C6).175C24 = D12⋊22D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).175C2^4 | 192,1190 |
(C2×C6).176C24 = Dic6⋊21D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).176C2^4 | 192,1191 |
(C2×C6).177C24 = Dic6⋊22D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).177C2^4 | 192,1192 |
(C2×C6).178C24 = C6.512+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).178C2^4 | 192,1193 |
(C2×C6).179C24 = C6.1182+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).179C2^4 | 192,1194 |
(C2×C6).180C24 = C6.522+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).180C2^4 | 192,1195 |
(C2×C6).181C24 = C6.532+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).181C2^4 | 192,1196 |
(C2×C6).182C24 = C6.202- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).182C2^4 | 192,1197 |
(C2×C6).183C24 = C6.212- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).183C2^4 | 192,1198 |
(C2×C6).184C24 = C6.222- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).184C2^4 | 192,1199 |
(C2×C6).185C24 = C6.232- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).185C2^4 | 192,1200 |
(C2×C6).186C24 = C6.772- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).186C2^4 | 192,1201 |
(C2×C6).187C24 = C6.242- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).187C2^4 | 192,1202 |
(C2×C6).188C24 = C6.562+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).188C2^4 | 192,1203 |
(C2×C6).189C24 = C6.782- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).189C2^4 | 192,1204 |
(C2×C6).190C24 = C6.252- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).190C2^4 | 192,1205 |
(C2×C6).191C24 = C6.592+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).191C2^4 | 192,1206 |
(C2×C6).192C24 = C6.792- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).192C2^4 | 192,1207 |
(C2×C6).193C24 = C4⋊C4.197D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).193C2^4 | 192,1208 |
(C2×C6).194C24 = C6.802- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).194C2^4 | 192,1209 |
(C2×C6).195C24 = C6.812- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).195C2^4 | 192,1210 |
(C2×C6).196C24 = S3×C22.D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).196C2^4 | 192,1211 |
(C2×C6).197C24 = C6.1202+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).197C2^4 | 192,1212 |
(C2×C6).198C24 = C6.1212+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).198C2^4 | 192,1213 |
(C2×C6).199C24 = C6.822- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).199C2^4 | 192,1214 |
(C2×C6).200C24 = C4⋊C4⋊28D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).200C2^4 | 192,1215 |
(C2×C6).201C24 = C6.612+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).201C2^4 | 192,1216 |
(C2×C6).202C24 = C6.1222+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).202C2^4 | 192,1217 |
(C2×C6).203C24 = C6.622+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).203C2^4 | 192,1218 |
(C2×C6).204C24 = C6.632+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).204C2^4 | 192,1219 |
(C2×C6).205C24 = C6.642+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).205C2^4 | 192,1220 |
(C2×C6).206C24 = C6.652+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).206C2^4 | 192,1221 |
(C2×C6).207C24 = C6.662+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).207C2^4 | 192,1222 |
(C2×C6).208C24 = C6.672+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).208C2^4 | 192,1223 |
(C2×C6).209C24 = C6.852- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).209C2^4 | 192,1224 |
(C2×C6).210C24 = C6.682+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).210C2^4 | 192,1225 |
(C2×C6).211C24 = C6.692+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).211C2^4 | 192,1226 |
(C2×C6).212C24 = C42.233D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).212C2^4 | 192,1227 |
(C2×C6).213C24 = C42.137D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).213C2^4 | 192,1228 |
(C2×C6).214C24 = C42.138D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).214C2^4 | 192,1229 |
(C2×C6).215C24 = C42.139D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).215C2^4 | 192,1230 |
(C2×C6).216C24 = C42.140D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).216C2^4 | 192,1231 |
(C2×C6).217C24 = S3×C4.4D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).217C2^4 | 192,1232 |
(C2×C6).218C24 = C42⋊20D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).218C2^4 | 192,1233 |
(C2×C6).219C24 = C42.141D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).219C2^4 | 192,1234 |
(C2×C6).220C24 = D12⋊10D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).220C2^4 | 192,1235 |
(C2×C6).221C24 = Dic6⋊10D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).221C2^4 | 192,1236 |
(C2×C6).222C24 = C42⋊22D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).222C2^4 | 192,1237 |
(C2×C6).223C24 = C42⋊23D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).223C2^4 | 192,1238 |
(C2×C6).224C24 = C42.234D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).224C2^4 | 192,1239 |
(C2×C6).225C24 = C42.143D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).225C2^4 | 192,1240 |
(C2×C6).226C24 = C42.144D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).226C2^4 | 192,1241 |
(C2×C6).227C24 = C42⋊24D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).227C2^4 | 192,1242 |
(C2×C6).228C24 = C42.145D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).228C2^4 | 192,1243 |
(C2×C6).229C24 = Dic6⋊7Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).229C2^4 | 192,1244 |
(C2×C6).230C24 = C42.147D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).230C2^4 | 192,1245 |
(C2×C6).231C24 = S3×C42.C2 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).231C2^4 | 192,1246 |
(C2×C6).232C24 = C42.236D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).232C2^4 | 192,1247 |
(C2×C6).233C24 = C42.148D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).233C2^4 | 192,1248 |
(C2×C6).234C24 = D12⋊7Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).234C2^4 | 192,1249 |
(C2×C6).235C24 = C42.237D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).235C2^4 | 192,1250 |
(C2×C6).236C24 = C42.150D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).236C2^4 | 192,1251 |
(C2×C6).237C24 = C42.151D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).237C2^4 | 192,1252 |
(C2×C6).238C24 = C42.152D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).238C2^4 | 192,1253 |
(C2×C6).239C24 = C42.153D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).239C2^4 | 192,1254 |
(C2×C6).240C24 = C42.154D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).240C2^4 | 192,1255 |
(C2×C6).241C24 = C42.155D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).241C2^4 | 192,1256 |
(C2×C6).242C24 = C42.156D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).242C2^4 | 192,1257 |
(C2×C6).243C24 = C42.157D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).243C2^4 | 192,1258 |
(C2×C6).244C24 = C42.158D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).244C2^4 | 192,1259 |
(C2×C6).245C24 = C42.159D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).245C2^4 | 192,1260 |
(C2×C6).246C24 = C42.160D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).246C2^4 | 192,1261 |
(C2×C6).247C24 = S3×C42⋊2C2 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).247C2^4 | 192,1262 |
(C2×C6).248C24 = C42⋊25D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).248C2^4 | 192,1263 |
(C2×C6).249C24 = C42⋊26D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).249C2^4 | 192,1264 |
(C2×C6).250C24 = C42.189D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).250C2^4 | 192,1265 |
(C2×C6).251C24 = C42.161D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).251C2^4 | 192,1266 |
(C2×C6).252C24 = C42.162D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).252C2^4 | 192,1267 |
(C2×C6).253C24 = C42.163D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).253C2^4 | 192,1268 |
(C2×C6).254C24 = C42.164D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).254C2^4 | 192,1269 |
(C2×C6).255C24 = C42⋊27D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).255C2^4 | 192,1270 |
(C2×C6).256C24 = C42.165D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).256C2^4 | 192,1271 |
(C2×C6).257C24 = C42.166D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).257C2^4 | 192,1272 |
(C2×C6).258C24 = S3×C4⋊1D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).258C2^4 | 192,1273 |
(C2×C6).259C24 = C42⋊28D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).259C2^4 | 192,1274 |
(C2×C6).260C24 = C42.238D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).260C2^4 | 192,1275 |
(C2×C6).261C24 = D12⋊11D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).261C2^4 | 192,1276 |
(C2×C6).262C24 = Dic6⋊11D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).262C2^4 | 192,1277 |
(C2×C6).263C24 = C42.168D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).263C2^4 | 192,1278 |
(C2×C6).264C24 = C42⋊30D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).264C2^4 | 192,1279 |
(C2×C6).265C24 = Dic6⋊8Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).265C2^4 | 192,1280 |
(C2×C6).266C24 = Dic6⋊9Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).266C2^4 | 192,1281 |
(C2×C6).267C24 = S3×C4⋊Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).267C2^4 | 192,1282 |
(C2×C6).268C24 = C42.171D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).268C2^4 | 192,1283 |
(C2×C6).269C24 = C42.240D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).269C2^4 | 192,1284 |
(C2×C6).270C24 = D12⋊12D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).270C2^4 | 192,1285 |
(C2×C6).271C24 = D12⋊8Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).271C2^4 | 192,1286 |
(C2×C6).272C24 = C42.241D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).272C2^4 | 192,1287 |
(C2×C6).273C24 = C42.174D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).273C2^4 | 192,1288 |
(C2×C6).274C24 = D12⋊9Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).274C2^4 | 192,1289 |
(C2×C6).275C24 = C42.176D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).275C2^4 | 192,1290 |
(C2×C6).276C24 = C42.177D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).276C2^4 | 192,1291 |
(C2×C6).277C24 = C42.178D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).277C2^4 | 192,1292 |
(C2×C6).278C24 = C42.179D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).278C2^4 | 192,1293 |
(C2×C6).279C24 = C42.180D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).279C2^4 | 192,1294 |
(C2×C6).280C24 = Dic3×C22×C4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).280C2^4 | 192,1341 |
(C2×C6).281C24 = C22×Dic3⋊C4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).281C2^4 | 192,1342 |
(C2×C6).282C24 = C2×C12.48D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).282C2^4 | 192,1343 |
(C2×C6).283C24 = C22×C4⋊Dic3 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).283C2^4 | 192,1344 |
(C2×C6).284C24 = C2×C23.26D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).284C2^4 | 192,1345 |
(C2×C6).285C24 = C22×D6⋊C4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).285C2^4 | 192,1346 |
(C2×C6).286C24 = C2×C4×C3⋊D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).286C2^4 | 192,1347 |
(C2×C6).287C24 = C2×C23.28D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).287C2^4 | 192,1348 |
(C2×C6).288C24 = C2×C12⋊7D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).288C2^4 | 192,1349 |
(C2×C6).289C24 = C24.83D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).289C2^4 | 192,1350 |
(C2×C6).290C24 = C2×D4×Dic3 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).290C2^4 | 192,1354 |
(C2×C6).291C24 = C2×C23.23D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).291C2^4 | 192,1355 |
(C2×C6).292C24 = C2×C23.12D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).292C2^4 | 192,1356 |
(C2×C6).293C24 = C24.49D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).293C2^4 | 192,1357 |
(C2×C6).294C24 = C2×C23⋊2D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).294C2^4 | 192,1358 |
(C2×C6).295C24 = C2×D6⋊3D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).295C2^4 | 192,1359 |
(C2×C6).296C24 = D4×C3⋊D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).296C2^4 | 192,1360 |
(C2×C6).297C24 = C2×C23.14D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).297C2^4 | 192,1361 |
(C2×C6).298C24 = C2×C12⋊3D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).298C2^4 | 192,1362 |
(C2×C6).299C24 = C24⋊12D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).299C2^4 | 192,1363 |
(C2×C6).300C24 = C24.52D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).300C2^4 | 192,1364 |
(C2×C6).301C24 = C24.53D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).301C2^4 | 192,1365 |
(C2×C6).302C24 = C2×Dic3⋊Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).302C2^4 | 192,1369 |
(C2×C6).303C24 = C2×Q8×Dic3 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).303C2^4 | 192,1370 |
(C2×C6).304C24 = C6.422- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).304C2^4 | 192,1371 |
(C2×C6).305C24 = C2×D6⋊3Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).305C2^4 | 192,1372 |
(C2×C6).306C24 = C2×C12.23D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).306C2^4 | 192,1373 |
(C2×C6).307C24 = Q8×C3⋊D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).307C2^4 | 192,1374 |
(C2×C6).308C24 = C6.442- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).308C2^4 | 192,1375 |
(C2×C6).309C24 = C6.452- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).309C2^4 | 192,1376 |
(C2×C6).310C24 = C6.1042- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).310C2^4 | 192,1383 |
(C2×C6).311C24 = C6.1052- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).311C2^4 | 192,1384 |
(C2×C6).312C24 = Dic3×C4○D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).312C2^4 | 192,1385 |
(C2×C6).313C24 = C6.1442+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).313C2^4 | 192,1386 |
(C2×C6).314C24 = (C2×D4)⋊43D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).314C2^4 | 192,1387 |
(C2×C6).315C24 = C6.1452+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).315C2^4 | 192,1388 |
(C2×C6).316C24 = C6.1462+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).316C2^4 | 192,1389 |
(C2×C6).317C24 = C6.1072- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).317C2^4 | 192,1390 |
(C2×C6).318C24 = (C2×C12)⋊17D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).318C2^4 | 192,1391 |
(C2×C6).319C24 = C6.1082- 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).319C2^4 | 192,1392 |
(C2×C6).320C24 = C6.1482+ 1+4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).320C2^4 | 192,1393 |
(C2×C6).321C24 = C22×C6.D4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).321C2^4 | 192,1398 |
(C2×C6).322C24 = C2×C24⋊4S3 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).322C2^4 | 192,1399 |
(C2×C6).323C24 = C23×Dic6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).323C2^4 | 192,1510 |
(C2×C6).324C24 = S3×C23×C4 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).324C2^4 | 192,1511 |
(C2×C6).325C24 = C23×D12 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).325C2^4 | 192,1512 |
(C2×C6).326C24 = C22×C4○D12 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).326C2^4 | 192,1513 |
(C2×C6).327C24 = C2×D4⋊6D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 48 | | (C2xC6).327C2^4 | 192,1516 |
(C2×C6).328C24 = C22×S3×Q8 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).328C2^4 | 192,1517 |
(C2×C6).329C24 = C22×Q8⋊3S3 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).329C2^4 | 192,1518 |
(C2×C6).330C24 = C2×Q8.15D6 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 96 | | (C2xC6).330C2^4 | 192,1519 |
(C2×C6).331C24 = Dic3×C24 | φ: C24/C23 → C2 ⊆ Aut C2×C6 | 192 | | (C2xC6).331C2^4 | 192,1528 |
(C2×C6).332C24 = C2×C6×C22⋊C4 | central extension (φ=1) | 96 | | (C2xC6).332C2^4 | 192,1401 |
(C2×C6).333C24 = C2×C6×C4⋊C4 | central extension (φ=1) | 192 | | (C2xC6).333C2^4 | 192,1402 |
(C2×C6).334C24 = C6×C42⋊C2 | central extension (φ=1) | 96 | | (C2xC6).334C2^4 | 192,1403 |
(C2×C6).335C24 = D4×C2×C12 | central extension (φ=1) | 96 | | (C2xC6).335C2^4 | 192,1404 |
(C2×C6).336C24 = Q8×C2×C12 | central extension (φ=1) | 192 | | (C2xC6).336C2^4 | 192,1405 |
(C2×C6).337C24 = C12×C4○D4 | central extension (φ=1) | 96 | | (C2xC6).337C2^4 | 192,1406 |
(C2×C6).338C24 = C3×C22.11C24 | central extension (φ=1) | 48 | | (C2xC6).338C2^4 | 192,1407 |
(C2×C6).339C24 = C3×C23.32C23 | central extension (φ=1) | 96 | | (C2xC6).339C2^4 | 192,1408 |
(C2×C6).340C24 = C3×C23.33C23 | central extension (φ=1) | 96 | | (C2xC6).340C2^4 | 192,1409 |
(C2×C6).341C24 = C6×C22≀C2 | central extension (φ=1) | 48 | | (C2xC6).341C2^4 | 192,1410 |
(C2×C6).342C24 = C6×C4⋊D4 | central extension (φ=1) | 96 | | (C2xC6).342C2^4 | 192,1411 |
(C2×C6).343C24 = C6×C22⋊Q8 | central extension (φ=1) | 96 | | (C2xC6).343C2^4 | 192,1412 |
(C2×C6).344C24 = C6×C22.D4 | central extension (φ=1) | 96 | | (C2xC6).344C2^4 | 192,1413 |
(C2×C6).345C24 = C3×C22.19C24 | central extension (φ=1) | 48 | | (C2xC6).345C2^4 | 192,1414 |
(C2×C6).346C24 = C6×C4.4D4 | central extension (φ=1) | 96 | | (C2xC6).346C2^4 | 192,1415 |
(C2×C6).347C24 = C6×C42.C2 | central extension (φ=1) | 192 | | (C2xC6).347C2^4 | 192,1416 |
(C2×C6).348C24 = C6×C42⋊2C2 | central extension (φ=1) | 96 | | (C2xC6).348C2^4 | 192,1417 |
(C2×C6).349C24 = C3×C23.36C23 | central extension (φ=1) | 96 | | (C2xC6).349C2^4 | 192,1418 |
(C2×C6).350C24 = C6×C4⋊1D4 | central extension (φ=1) | 96 | | (C2xC6).350C2^4 | 192,1419 |
(C2×C6).351C24 = C6×C4⋊Q8 | central extension (φ=1) | 192 | | (C2xC6).351C2^4 | 192,1420 |
(C2×C6).352C24 = C3×C22.26C24 | central extension (φ=1) | 96 | | (C2xC6).352C2^4 | 192,1421 |
(C2×C6).353C24 = C3×C23.37C23 | central extension (φ=1) | 96 | | (C2xC6).353C2^4 | 192,1422 |
(C2×C6).354C24 = C3×C23⋊3D4 | central extension (φ=1) | 48 | | (C2xC6).354C2^4 | 192,1423 |
(C2×C6).355C24 = C3×C22.29C24 | central extension (φ=1) | 48 | | (C2xC6).355C2^4 | 192,1424 |
(C2×C6).356C24 = C3×C23.38C23 | central extension (φ=1) | 96 | | (C2xC6).356C2^4 | 192,1425 |
(C2×C6).357C24 = C3×C22.31C24 | central extension (φ=1) | 96 | | (C2xC6).357C2^4 | 192,1426 |
(C2×C6).358C24 = C3×C22.32C24 | central extension (φ=1) | 48 | | (C2xC6).358C2^4 | 192,1427 |
(C2×C6).359C24 = C3×C22.33C24 | central extension (φ=1) | 96 | | (C2xC6).359C2^4 | 192,1428 |
(C2×C6).360C24 = C3×C22.34C24 | central extension (φ=1) | 96 | | (C2xC6).360C2^4 | 192,1429 |
(C2×C6).361C24 = C3×C22.35C24 | central extension (φ=1) | 96 | | (C2xC6).361C2^4 | 192,1430 |
(C2×C6).362C24 = C3×C22.36C24 | central extension (φ=1) | 96 | | (C2xC6).362C2^4 | 192,1431 |
(C2×C6).363C24 = C3×C23⋊2Q8 | central extension (φ=1) | 48 | | (C2xC6).363C2^4 | 192,1432 |
(C2×C6).364C24 = C3×C23.41C23 | central extension (φ=1) | 96 | | (C2xC6).364C2^4 | 192,1433 |
(C2×C6).365C24 = C3×D42 | central extension (φ=1) | 48 | | (C2xC6).365C2^4 | 192,1434 |
(C2×C6).366C24 = C3×D4⋊5D4 | central extension (φ=1) | 48 | | (C2xC6).366C2^4 | 192,1435 |
(C2×C6).367C24 = C3×D4⋊6D4 | central extension (φ=1) | 96 | | (C2xC6).367C2^4 | 192,1436 |
(C2×C6).368C24 = C3×Q8⋊5D4 | central extension (φ=1) | 96 | | (C2xC6).368C2^4 | 192,1437 |
(C2×C6).369C24 = C3×D4×Q8 | central extension (φ=1) | 96 | | (C2xC6).369C2^4 | 192,1438 |
(C2×C6).370C24 = C3×Q8⋊6D4 | central extension (φ=1) | 96 | | (C2xC6).370C2^4 | 192,1439 |
(C2×C6).371C24 = C3×C22.45C24 | central extension (φ=1) | 48 | | (C2xC6).371C2^4 | 192,1440 |
(C2×C6).372C24 = C3×C22.46C24 | central extension (φ=1) | 96 | | (C2xC6).372C2^4 | 192,1441 |
(C2×C6).373C24 = C3×C22.47C24 | central extension (φ=1) | 96 | | (C2xC6).373C2^4 | 192,1442 |
(C2×C6).374C24 = C3×D4⋊3Q8 | central extension (φ=1) | 96 | | (C2xC6).374C2^4 | 192,1443 |
(C2×C6).375C24 = C3×C22.49C24 | central extension (φ=1) | 96 | | (C2xC6).375C2^4 | 192,1444 |
(C2×C6).376C24 = C3×C22.50C24 | central extension (φ=1) | 96 | | (C2xC6).376C2^4 | 192,1445 |
(C2×C6).377C24 = C3×Q8⋊3Q8 | central extension (φ=1) | 192 | | (C2xC6).377C2^4 | 192,1446 |
(C2×C6).378C24 = C3×Q82 | central extension (φ=1) | 192 | | (C2xC6).378C2^4 | 192,1447 |
(C2×C6).379C24 = C3×C22.53C24 | central extension (φ=1) | 96 | | (C2xC6).379C2^4 | 192,1448 |
(C2×C6).380C24 = C3×C22.54C24 | central extension (φ=1) | 48 | | (C2xC6).380C2^4 | 192,1449 |
(C2×C6).381C24 = C3×C24⋊C22 | central extension (φ=1) | 48 | | (C2xC6).381C2^4 | 192,1450 |
(C2×C6).382C24 = C3×C22.56C24 | central extension (φ=1) | 96 | | (C2xC6).382C2^4 | 192,1451 |
(C2×C6).383C24 = C3×C22.57C24 | central extension (φ=1) | 96 | | (C2xC6).383C2^4 | 192,1452 |
(C2×C6).384C24 = C3×C22.58C24 | central extension (φ=1) | 192 | | (C2xC6).384C2^4 | 192,1453 |
(C2×C6).385C24 = Q8×C22×C6 | central extension (φ=1) | 192 | | (C2xC6).385C2^4 | 192,1532 |
(C2×C6).386C24 = C2×C6×C4○D4 | central extension (φ=1) | 96 | | (C2xC6).386C2^4 | 192,1533 |
(C2×C6).387C24 = C6×2+ 1+4 | central extension (φ=1) | 48 | | (C2xC6).387C2^4 | 192,1534 |
(C2×C6).388C24 = C6×2- 1+4 | central extension (φ=1) | 96 | | (C2xC6).388C2^4 | 192,1535 |